1. 镜头衍射极限计算公式
一般的光学显微镜是利用可见光成像,那么考虑其衍射极限,光学显微镜的分辨率大约是200-300 nm。而透射电镜利用电子束成像,分辨率可达0.2 nm。
2. 相机衍射极限
当光线通过一些窄蓬或小孔时,物体边缘会出现光波分散的现象,这种光学现象便称为ldquo;衍射rdquo;。
从摄影的角度来说,当光圈太小时衍射现象便会出现,令影像边绿位置变得松散。这是一种光波的基本特性,与镜片的光学质素无关。 而且,衍射也会导致数码相机出现紫边现象。
3. 镜头的光学衍射极限
减小光波长和增加孔外径,改变光路来突破衍射极限。
突破衍射极是光学和声学领域长期追求的目标。自负折射和双曲折射超材料提出以来,在这些超材料中获得了携带超分辨率信息的倏逝波。然而,由于介质损耗,超分辨率聚焦和成像仅能在近场实现。
4. 衍射角计算公式
首先光栅衍射的衍射角范围是75度。对于具有N个狭缝的光栅,在平行光照射下,每个狭缝都要产生各自的衍射条纹,尽管各狭缝的位置不同,但由于屏幕放在透镜的焦平面处,这N组衍射条纹将通过透镜完全重合,如同单个狭缝所形成的衍射条纹一样.由于各狭缝都处在同一波阵面上,相邻两缝所有的对应点发射的 子波到达屏上P点的光程差都是相等的,所以通过所有狭缝的光都是相干光,在屏幕上P点处还将出现相干叠加,形成干涉条纹,这就是多缝干涉.
5. 镜头衍射极限计算公式图解
针尖增强拉曼散射(TERS)把表面增强拉曼光谱和拉曼-AFM分析结合了起来。这一令人激动的研究领域的目标是为拉曼分析提供真正的纳米尺度的空间分辨率。 尽管TERS的原理很简单,但是TERS的实际应用是很复杂的,需要具有相当的光谱学和光学专业知识。 表面增强拉曼散射(SERS)能够使拉曼信号强度增强几个数量级。
通过将原子力显微镜(AFM)的针尖包覆SERS活性金属或金属纳米粒子使其具有SERS活性,那么SERS增强效应将可望只在针尖附近很小范围发生。
由于针尖的尺度一般都小于100 nm,所以这种测量的空间分辨率也将相应地小于100 nm。
TERS实验通常需要将激发激光束通过标准的显微镜物镜聚焦,从而产生在衍射极限0.5 ~ 1.0微米范围内尺寸的光斑(具体大小依赖于激发激光波长和所使用的物镜);然后使具有SERS活性的针尖与激光光斑范围内的样品接触。 这里主要有两种类型的拉曼散射过程: 1. 来自衍射极限0.5 ~ 1.0微米激光光斑范围内的常规拉曼散射。
2. 来自针尖的表面增强拉曼散射(即针尖增强拉曼散射)。 由于SERS给出的拉曼强度增强可高达1014-1015倍,那么如果要利用TERS成功实现纳米尺度的拉曼分析,则TERS强度必须达到或超过常规拉曼信号强度。
因为与常规拉曼分析相比,TERS所取样的分子数目相应地也减少了几个数量级,因此并非是对所有样品一定能实现TERS强度超过常规拉曼信号。
6. 衍射极限半径
一般说来,光栅的分辨率是通过谱线的半角宽度△θ来表征的 ,△θ=λ/(Nd*cosθ),其中△θ是半角宽度,指的是衍射斑的角半径,N是光栅总缝数,d是光栅常数,θ是衍射角。
常用分辨率:单位均为(像素/厘米),切不记错。
查看更多关于【摄影器材】的文章