1. 高斯结构 镜头
反摄远型镜头结构特点透镜组和后正透镜组组成。摄远型镜头结构特点:由一个前正透镜组和一个后负透镜组组成。
双高斯物镜是在具有较大视场(大约40°左右)的物镜中,相对孔径最先达到F/2的一种物镜。
加入的两个胶合面,使其有可能更好地消除象差。
胶合面两边玻璃的色散尽管不同,但折射率近似相等,因此胶合面的加入对单色象差影响不大。扩展资料:镜头是影视创作的基本单位,一个完整的影视作品,是由一个一个的镜头组成的,离开独立的镜头,也就没有了影视作品。
通过多个镜头的组合与设计的表现,完成整个影视作品镜头的制作,所以说镜头的应用技巧也直接影响影视作品的最终效果...
2. 双高斯结构镜头优缺点
单反相机镜头的长短,是由镜头的结构决定的,一般受以下三方面因素影响:
1、镜头的基本结构。一般广角镜头采用反望远式的后对焦镜头,第一片巨大的凹透镜给这种镜头赢得了“灯泡”的外号。标准镜头往往采用双高斯结构及其变种,长焦多采用望远式结构,变焦基本就是库克式结构。
2、为了消除畸变和像差等需要,往往增加了不同的镜片组,必然会导致镜头变长。
3、为了满足大光圈的需要,除了增大镜头的口径,相应的也延长了镜头的长度。
几种双高斯类型的镜头
镜头在其它方面差异不大的话,长短的规律是:
长焦距镜头长于短焦距镜头;
变焦镜头往往长于定焦镜头;
高档镜头通常长于廉价镜头。
3. 双高斯镜头结构初始参数
单反最常见的是6片4组的高斯镜头、及改良型,光圈容易做到1.8……
3片3组的库克镜光圈不会大于3.5、4片3组的天塞镜光圈不会大于2.8,用在旁相机上比较多……
镜头的镜片以平凸、平凹、双凹、双凸,或独片、或粘成镜片组并组合,以尽可能互补消除镜头的像差、色散、畸变等问题,并尽量提高通光孔径……
4. 双高斯镜头设计
佳能曾经有过漫长的旁轴相机生产记录,其中最著名的应该算是1960年代可换镜头的Canon7系列,世界上最大光圈镜头纪录的保持者就是用于该系列相机的50mmF0.95标准镜头。1980年代以前的佳能旁轴相机有专门的商标Canonet,除去可换镜头的7系列之外,不可更换镜头的镜间快门CanonetQL系列是佳能最有人气的旁轴相机,其中的最高级产品QL17从60年代到80年代,历经三代,持续生产20年,算得上是旁轴相机中的常青树。
GIII版本是QL17的第三代产品,1982年停产,是佳能最后一种全机械手控旁轴相机。 Canonet GIIIQL17不但具备完善的全机械手动曝光功能,并且提供了那个年代旁轴相机前所未有过的自动化性能,体现着佳能一贯追求的尽可能提高拍摄速度和拍摄成功率的设计思路。
完全可以从CanonetGIIIQL17上感受到佳能当年在相机自动化上所作出的种种尝试和努力,这也符合1970年代的摄影科技潮流,那就是不断向着电子化、自动化迈进。 佳能 CANON QL17 主要特点:全金属结构、做工精细,刻字美观特有佳能QL (Quick Loading, 快速装片) 系统6片4组双高斯结构镜头,CANON 40mmF1.7光圈:F1.7—F16无级调节, 快门:1/4秒—1/500秒+B门电力检测、安全装片指示、快门上弦指示感光度调整范围:ISO25--800测光联动范围:EV3.5-EV17滤镜口径:48mm
5. 双高斯镜头的优点
Planar是采用双高斯结构的镜头设计,一般用在标准镜头和中焦上;Distagon是采用反远摄结构的镜头设计,一般用在广角上。
6. 双高斯照相物镜的设计
一个光学系统除了要考虑高斯光学的有关问题,诸如物像共轭位置、放大率、转像和转折光路等以外,还需考虑成像范围的大小、成像光束孔径角的大小、成像波段的宽窄以及像的清晰度和照度等一系列问题。
满足一系列要求的实际光学系统往往不是几个透镜的简单组合,而由一系列透镜、曲面反射镜、平面镜、反射棱镜和分划板等多种光学零件组成,并且要通过合理设置光阑、精细校正像差和恰当确定光学零件的横向尺寸等手段才能得到合乎需要的高质量系统。
光学系统的各个光学零件都由各自的镜框限定其通光孔,绝大多数情况下是圆孔。有时还在系统中加入固定的或可变的专设光孔。在所有这些光孔中,一定有一个光孔起着限制轴上点成像光束孔径角的作用;另外有一个光孔起着限制成像范围的作用。这样的光孔称为光阑:前者称孔径光阑或有效光阑;后者称视场光阑。任何光学系统必定存在这样二个光阑。在目视光学系统中,眼睛的瞳孔也必须作为系统的一个光孔来考虑。
孔径光阑在光学系统中的位置与很多因素有关。在某些系统中有特定的要求,例如,目视光学系统一定要使出射光瞳位于目镜之外,以便眼睛的瞳孔能与之重合;远心系统中应使孔径光阑位于焦点上。此外,孔径光阑的位置还与像差校正和系统各光学零件的横向尺寸有关,应在设计时合理确定。
视场光阑是光学系统中决定其成像范围的一个光孔。在有中间实像平面的系统(例如开普勒望远镜和显微镜)和有实像平面的系统(例如摄影系统)中,视场光阑都设置在这种像平面上。视场光阑被其前面的光学零件在物空间中所成的像称为入射窗,它对入射光瞳中心所张的角度是所有光孔像中最小者,这个角度称为视场角。同样,视场光阑被其后面的光学零件在像空间所成的像称为出射窗。
入射窗、视场光阑和出射窗也是共轭的。当视场光阑设置在实像平面或中间实像平面上时,入射窗和出射窗分别与物平面和像平面重合,此时视场有明晰的边界。在无实像或中间实像平面的场合,例如眼睛通过放大镜或伽利略望远镜观察时,系统中也总有一个零件,它的通光孔径起着限制视场的作用,上述二情况中,放大镜本身孔径和望远镜物镜的孔径就是决定可见视场范围的视场光阑。显然,此时入射窗不与物平面重合,无明晰的视场边界。
在理想情况下,轴上点和轴外点的光束都受孔径光阑的限制,有基本相同的光束孔径角,如果视场不太大,整个视场的像面照度基本均匀。然而在实际光学系统中,轴外点成像光束往往受其他光学零件通光孔的限制,结果是轴外点的光束孔径角比轴上点的小得多。这是因为要使轴外点也以充满入射光瞳的光束成像时,那些远离孔径光阑的透镜需要有相当大的直径,并且对全孔径轴外光束校正像差也非常困难。
因此,为了改善轴外点的成像质量、也为了光学零件的横向尺寸不特别大,常用适当减小某几个透镜直径的方法来对轴外光束作必要的限制。这种轴外点发出充满入射光瞳的光束被某些光学零件部分拦截而不能全部通过光学系统的现象,称为光束渐晕。
物点的成像光束是一个以物点为顶点,以入射光瞳为底的空间光锥。此光束经过光学系统以后,其结构会发生变化,对于轴对称光学系统(绝大多数系统属这一类),轴上点光束总具有对称性质,但轴外点光束经系统后失去对称。为便于了解这种光束的结构,通常取其二个特征面上的平面光束来进行描述。
子午平面、子午光束 包含轴外物点和光轴的平面称为子午平面。由于光学系统的轴对称性质,轴外物点总可取在作图平面上,即纸平面就是子午平面。位于子午平面上的光束称为子午光束。显然,主光线一定是子午光束中的一条光线。
弧矢平面、弧矢光束 包含主光线并与子午平面垂直的平面称为弧矢平面。位于弧矢平面上的光束称为弧矢光束。显然,主光线就是子午平面与弧矢平面的交线。由于主光线要经系统各个表面的折射、反射而改变其方向,所以,弧矢平面也逐面发生变化而不是一个统一的平面。
由于光学系统的轴对称性,轴上点光束无需区分子午光束与弧矢光束,轴外点光束则一定是对子午平面对称的。
透镜(或透镜组)所成的像与原物面貌不是准确相似的现象。由于物点发出的光线与透镜主轴交角太大,离轴较远或透镜材料的折射率随光的波长而变等原因造成。像差大小反映成像品质的优劣。像差主要有7种;对单色光有5种,即球差、彗差、像散和像面弯曲及畸变。对于复色光还有两种色差,即轴向色差和垂轴色差。尽量消除或减少这些像差是设计光具组的一项重要任务。
查看更多关于【技巧】的文章