1. 向量之间的射影怎么求
设两个向量a和b,向量a在向量b上的投影也是一个向量,不妨记做向量c
则有c与b共线,方向取决于a与b的夹角,由此推导出求解向量的投影的公式:|c|=|a|*|cos|。
2、向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示。
2. 高等数学的向量的射影定理
设向量a与向量b上的夹角为θ如果θ已知,则向量a在向量b上的射影为Prjb(a)=|a|·cosθ如果θ未知,则向量a在向量b上的射影为Prjb(a)=|a|·cosθ=|a|·(a·b)/(|a|·|b|)=(a·b)/|b|
3. 向量的射影计算公式
点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|a*n|/|n|,即:a向量与n向量的数量积除以n向量的模
。
点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。
在数学中,向量(也称为欧几里得
向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量
),数量(或标量)只有大小,没有方向。
4. 向量在向量上的射影怎么求
空间向量a在b上的投影公式:对于直角△ABC,∠BAC=90度,AD是斜边BC上的高,射影定理,(AD)^2=BD·DC (AB)^2=BD·BC (AC)^2=CD·BC这主要是由相似三角形来推出的。
从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,由三角形相似的性质可得射影定理。
扩展资料
证明思路:
正射影二面角的欧几里得射影面积公式。因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的乘积比。所以就是图形的长度(三角形中称高)的比。
那么这个比值应该是平面所成角的余弦值。在两平面中作直角三角形,并使斜边和一直角边垂直于棱,则三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比。将此比值放到该平面中的三角形中去运算即可得证
5. 向量的射影是什么意思
射影是一个存在于数学及物理学中的概念,存在于集合论、线性代数、几何学以及拓扑学等诸多理念中。在平面几何中,与一个图形相似的图形叫做这个图形的射影。
射影是几何学术语,射影几何用来研究图形的射影性质,即图形经过射影变换不变的性质,也叫做投影几何学。在经典几何学中,射影几何处于一种特殊的地位,通过可以把其他几何联系起来。
拓展资料
历史
射影几何的某些内容在公元前就已经发现了,基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。但直到十九世纪才形成独立体系,并趋于完备。
1822年法国数学家彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。
射影几何学在航空、测量、绘图、摄影等方面有广泛的应用。
向量
设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A',作点B在直线m上的射影B',则向量A'B'叫做AB在直线m上或在向量e方向上的正射影,简称射影。
向量A'B'的模∣A'B'∣=∣AB∣·∣cos〈a,e〉∣=∣a·e∣。
正射影像的数量又称正投影。
6. 向量的射影向量
空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(moduius)。
规定,长度为0的向量叫做零向量,记为0.
模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a
方向相等且模相等的向量称为相等向量。
第一步:
按照图形建立三维坐标系O-xyz
之后,将点的坐标带进去,求出所需向量的坐标。
第二步:
求平面的法向量:
令法向量n=(x,y,z)
因为法向量垂直于此平面
所以n垂直于此面内两相交直线(其方向向量为a,b)
可列出两个方程
n·a=0,n·b=0
两个方程,三个未知数
然后根据计算方便
取z(或x或y)等于一个数(如:1,√2等)
代入即可求出面的一个法向量n的坐标了.
会求法向量后
1.斜线与平面所成的角就是求出斜线的方向向量与平面的法向量n的夹角,所求角为上述夹角的余角或者夹角减去π/2.
2.点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,
求出平面外那点和你所取的那点所构成的向量,记为a
点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求.
3.二面角的求法就是求出两个平面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积
:cos
那么二面角就是上面求的两法向量的夹角或者它的补角。
4.设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν
则
线线平行
l∥m<=>a∥b
<=>
a=kb
线面平行
l∥α<=>a⊥μ
<=>a·μ=0
面面平行
α∥β<=>μ∥ν
<=>μ=kν
线线垂直
l⊥m<=>a⊥b
<=>a·b=0
线面垂直
l⊥α
<=>a∥μ
<=>
a=kμ
面面垂直
α⊥β<=>
μ⊥ν
<=>μ·ν=0
5.向量的坐标运算:设a=(x1,y1),b=(x2,y2),则
1.|a|=√(x1²+y1²)
2.a+b=(x1+x2,y1+y2)
3.a-b=(x1-x2,y1-y2)
4.ka=k(x1,y1)=(kx1,ky1)
5.a·b=x1x2+y1y2
6.a∥b<=>
x1y2=x2y1(一般写为:x1y2-x2y1=0)
7.a⊥b<=>
a·b=0<=>x1x2+y1y2=0
8.cos=(a·b)/(|a|·|b|)=(x1x2+y1y2)
/
[
√(x1²+y1²)·√(x2²+y2²)
]
7. 向量影射公式
偏导数基本公式:f'x=(x^2)'+2y *(x)'=2x+2y。在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
8. 向量射影怎么算
求曲面上一点的法向量方法如下:
1、曲面由方程F(x,y,z)=0决定,相应的某一点M的法向量你只需要对应的求偏导数就可以了。
2、由于法向量所在的是一条直线,所以方向来讲有两个,如果没有特别要求一般是可以随便选择的,如果是坐标的曲面积分什么的,需要注意一下和xyz正方向之间的夹角,因为这关系到面积投影的正负。
3、至于法向量的角度这个教材上有写明的,就是对F分别求出x,y,z的偏导数之后,Fx‘,Fy’,Fz‘,利用各自的分量除以对应的长度就可以了啊。
4、比如说和x轴的角度cosα=Fx‘/(Fx‘^2+Fy’^2+Fz'^2)^1/2 其余的类似。
法向量的主要应用如下
1、求斜线与平面所成的角(一般只求出正弦值即可):求出平面法向量和斜线的一边,然后联立方程组,可以得到角度的余弦值,根据公式Sinα=|Cosα|。利用这个原理也可以证明线面平行;
2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补;
3、点到面的距离: 任一斜线(平面上一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。利用这个原理也可以求异面直线的距离
法向量方法是高考数学可以采用的方法之一,它的优点在于思路简单,容易操作。只要能够建立出直角坐标系,都可以写出最后答案。缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候。
查看更多关于【技巧】的文章